ITEX:

In-Tube Extraction Sample Preparation for Gas Chromatography

...**LTL**ANALYTILS

CTC Analytics AG Industriestrasse 20 CH-4222 Zwingen Switzerland Tel: +41 61 7658100 Fax: +41 61 7658199 E-mail: support@ctc.ch Web: www.ctc.ch

In-Tube Extraction

ITEX, a new Sample Preparation Technique for Gas Chromatography

Bruno Baltensperger

CTC Analytics AG, Industriestrasse 20, CH-4222 Zwingen, Switzerland Beat Schilling BGB Analytik AG, Lettenstrasse 97, CH-8134 Adliswil, Switzerland

Range of possible applications

- Environmental
- Drinking Water
- Foods / Flavours
- Consumer Products
- Forensics / Toxicology
- Petrochemicals
- Polymers
- Pharmaceuticals
- Residual Solvents

Rapid and efficient sample enrichment of volatile and semi-volatile compounds in solid, liquid and gaseous samples

- In-tube extraction and direct thermal desorption using proven industry standard adsorbents
- Syringe only concept for transparent sample handling, no sample loops, transfer lines, or switching valves
- No GC injector modifications, no cryo-focussing necessary Top mounted on GC's, saves valuable bench space
- Interfaces with any CombiPAL System controlled by all major GC/GC-MS Systems

ITEX Sample Extraction Procedure

Enrichment | Relationship between Sample Volume & Sensitivity

Enrichment of Methylesters on a Tenax TA ITEX trap. 1μ l of a mixture of C4, C6, C8, C10 Methylesters in Methanol (100ng/ μ l) was injected into a 20ml HS-vial. After conditioning at 40°C for 10min. 1ml of the headspace using an ITEX trap without packing material was injected to determine a "static headspace value" (0x). Afterwards the needle was replaced by the TENAX TA ITEX trap. The enrichment of the solutes on the trap was studied using various numbers of pumping strokes.

ITEX Parameter:

Extraction Speed: 100µl/sec.

Extraction Strokes: 0 / 10 / 20 / 40 / 60

Temperature Pumping Syringe / Sample Incubation: 40°C/10min.

Desorption at 250°C, 15sec. splitless

Chromatography:

Injection: Splitless 15sec. at 250°C, Carrier gas: 0.2bar Hydrogen

Column: BGB-1 15m x 0.32mm ID, 1.0µm film

Temperature Program: 40°C - 1 min. - 10°C/min to 200°C

Detection: FID 250°C

Environmental Application | EPA Method 502.2

Static Headspace Parameter

60°C / 10min / 1ml sample volume

ITEX Parameter:

Extraction Speed: 100µl / sec.
Total Pumping Strokes: 50
Temperature Pumping Syringe / Sample Incubation: 60°C -10min
Desorption at 200°C, 15sec. splitless

- 1,1-Dichloroethylene 1
- Methylene chloride 2
- (dichloromethane)
- trans 1,2-Dichloroethylene 3
- 1,1-Dichloroethane 4
- 2,2-Dichloropropane 5
- 6 cis-1,2-Dichloroethylene
- 7 Chloroform
- Bromochloromethane 8
- 1,1,1-Trichloroethane 9 10
- 1,1-Dichloropropene Carbon tetrachloride
- 11
- 1,2-Dichloroethane 12
- 13 Benzene

- 14 Trichloroethylene
- 15 1,2-Dichloropropane
 - Bromodichloromethane 16
 - Dibromomethane 17
 - 18 cis-1,3-Dichloropropylene
 - 19 Toluene
 - 20 trans-1,3-Dichloropropylene
 - 21 1,1,2-Trichloroethane
 - 22 1,3-Dichloropropane
 - 23 Tetrachloroethylene
 - 24 Dibromochloromethane
 - 25 1,2-Dibromoethane (EDB)
 - Chlorobenzene 26
 - 27 1,1,1,2-Tetrachloroethane

Comparison of ITEX analysis versus Static Headspace Sample: Purge and Trap calibration mix (Restek Cat.No. 30431 502.2 CAL2000 Mega-Mix)

Chromatography:

Injection: Splitless 15sec. at 250°C / Carrier gas: 0.2bar hydrogen
Column: Rtx-502.2 60m x 0.32mm ID, 1.8µm film
Temperature Program: 40°C - 1min 10°C - min to 220°C
Detection: FID 250°C

- 28 Ethylbenzene
- 29 m-Xylene
- 30 p-Xylene
- 31 o-Xylene
- 32 Styrene
- 33 Isopropylbenzene
- 34 Bromoform
- 35 1,1,2,2-Tetrachloroethane
- 36 1,2,3-Trichloropropane
- n-Propylbenzene 37
- 38 Bromobenzene

39

- 1,3,5-Trimethylbenzene
- 2-Chlorotoluene 40
- 41 4-Chlorotoluene

- 42 tert-Butylbenzene
- 43 1,2,4-Trimethylbenzene
- 44 sec-Butylbenzene
- 45 4-Isopropyloluene (p-Cymene)
- 46 1,3-Dichlorobenzene
- 47 1,4-Dichlorobenzene
- 48 n-Butylbenzene 49 1,2-Dichlorobenzene
- 50 1,2-Dibromo-3-chloropropane
- 51 1.2.3-Trichlorobenzene
- 52 Hexachloro-1,3-butadiene
- (Hexachlorobutadiene)
- 53 Naphthalene
- 54 1,2,3-Trichlorobenzene

Comparison Direct Injection vs ITEX | Diesel Oil

 $1\mu l$ of a Diesel dissolved in Methanol (500ng / $\mu l)$ was injected (splitless 15sec.) into the injector to determine a "100% value". $1\mu l$ of the same solution was added to 12ml water in a 20ml Headspace vial and then analysed with ITEX.

ITEX Parameter:

Extraction Speed: 120µl/sec.
Extraction Strokes: 120
Temperature Pumping Syringe / Sample Incubation: 50°C - 10min.
Desorption at 250°C, 15sec. splitless

Chromatography:

Injection: Splitless 15sec. at 250°C / Carrier gas: 0.2bar Hydrogen
Column: BGB-1 15m x 0.32mm ID, 1.0μm film
Temperature Program: 40°C - 1min 10°C /min to 200°C
Detection: FID 250°C

Environmental Application | VOC, BTEX in Water ppt Level

Chromatogram shows BTEX Compounds at a concentration of 50ng/l using 20 Extraction strokes

Monitoring of BTEX and VOC Compounds in Water (EPA Method 502.2)

Key Words: VOC, BTEX, EPA Method 502.2, ITEX

BTEX and VOC Compounds according to EPA Method 502.2 are analysed using ITEX sample preparation technique. Total sample preparation time of less than 15 minutes allows a high sample throughput.

Sample Preparation:

10ml water is filled into 20ml Headspace sample vials. 3g Sodium chloride and 1µl of the internal standard VOC (50ppb Fluorobenzene in Ethanol) is added. After sample conditioning at 60°C during 10 minutes 20 strokes of the headspace are pumped through the ITEXtrap with a velocity of 100µl/sec. The resulting sensitivity is sufficient to obtain the requested detection limit for drinking water of 0.05µg/l.

ITEX Conditions:

Sample Conditioning @ 60°C, 10 min.	
Extraction Strokes: 20 x 1ml	
Desorption @ 230°C with 1.3ml Headspace 20µl/sec.	

Chromatography:

Column: Rtx-502.2, 60m x 0.32mm, 1.8µm film		
Carrier Gas: Helium 20psi		
Temperature Program: 40°C - 2 min to 240°C - 2 min. at 10°C / min.		
Precolumn: 1m x 0.32mm deactivated with DPTMDS		
Injector: Gerstel KAS3 with septa @ 150°C isothermal		
GC: Varian 3300		
Detector: Varian Saturn 4D GC/MS/MS		

Perfume Application | Softener-Comparison Porapak Filter Technique vs. ITEX

Chromatography (Thermo TraceGC):

Column	Stabilwax 30m x 0.25mmID x 0.25 mm	
Oven	35°C - 0.5min. 15°C / min. 50°C - 0min. 5°C / min. 220°C / 1min	
SSL	splitless with surge, surge pressure 20kPa/0.4min (0.5ml), split flow 100ml /0.3min	
Carrier	He, 1ml constant flow with vacuum compensation	

MS conditions (Thermo Trace MS system):

Ionisation mode	El+
Source temperature	230°C
Interface	220°C
Mass	20-350 amu

ITEX conditions:

Incubation temp	40°C
Incubation time	30 min
Syringe temp	45°C
Extraction volume	1000 ml per stroke
Extraction strokes	10
Extraction speed	100 ml/sec
Desorption temp	200°C
Desorption speed	100 ml/sec
Flush time	5 min

Courtesy of: Givaudan Research Company, CH-8600 Dübendorf, Zürich. Switzerland , H. Koch

Specifications

ITEX adsorption step out of a sample vial

Conclusion

Extraction Speed:

2.5ml with 1/4" 28 UNF fitting

Selectable from 10 μl / sec. up to 1000 μl / sec.

Extraction Strokes: Selectable from 1 - 999

Extraction Volume: Selectable from 250µl - 2500µl / 1 stroke

Desorption Temperature: +5°C above ambient - 350°C selectable in 1°C increments

Desorption Time: 0 - 300 seconds

Pumping Syringe and Trap Cleaning: Inert gas purging, 30sec. - 600sec.

Heated Pumping Syringe: +5°C above ambient - 150°C selectable in 1°C increments

Incubator Oven: 6 heated vial positions for 2ml / 10ml / 20ml vials +5°C above ambient - 200°C selectable in 1°C increments

Agitation:

Interval shaking 250rpm-750rpm, selectable in 1rpm increments

Incubation Time:

Up to 999 minutes selectable in 1 second increments

This new approach, ITEX or In-Tube Extraction, an automated sample adsorption and thermal desorption technique shows a great potential for volatile compounds in various matrices.

The adsorption at the trap does continuously reduce the concentration of analytes in the headspace and disturbs the equilibrium in the vial. The result is a pumping effect of the analytes from the sample matrix to the headspace. This effect is similar as used by the SPME technique but the active control over the pumping strokes allows the user to utilize rather a dynamic headspace as known by the Purge&Trap technique.

The sensitivity level to be reached can be as far down as the ppt level.

Using the flush gas and a user selectable trap heating temperature does allow to clean the trap very efficiently. Blank runs, even after several hundred injections, do not show a carry over effect. We are aware that this statement can not be generalized. It depends on the sample and matrices. The technique is still too young to be able to give a general statement