# **Forced Degradation Automation**

# Authors: Lina Liu<sup>1\*</sup>, Tim Rhodes<sup>1</sup>, Roy Helmy<sup>1</sup>, Elise Miller<sup>1</sup>, Jia Zang<sup>1</sup>, Margaret Figus<sup>1</sup>, Wes Schafer<sup>1</sup>, Paul Harmon<sup>1</sup>, Brian Farrer<sup>1</sup>, Carlos Perez<sup>2</sup>, Scott Donenfeld<sup>2</sup>

Affiliations: 1 – Merck & Co., Inc; 2 – Leap Technologies



Conditions and Case Study

#### Forced degradation is an important method used in drug development in the pharmaceutical industry. Forced degradation studies are used for multiple purposes, including demonstration of the specificity of separation methods, gaining insight into degradation pathways, and discernment of degradation products in formulations that are related to drug substances versus those that are related to other ingredients of a formulation.

However, FDA guidance for forced degradation is vague with respect to experimental conditions. In order to harmonize the procedures of forced degradation, an automated method for forced degradation was developed, utilizing the CTC LEAP PAL workstation automation system.

The Automated Forced Degradation approach significantly reduces the amount of manual labor used to perform the tests and harmonizes the operational procedures of forced degradation.

The Automated Forced Degradation system is user-friendly and is intended to be used as a "walk-up system" that is able to prepare forced degradation and linearity samples, perform on-line HPLC analysis as well as generate reports automatically. The details of the system will be discussed along with a number of case studies demonstrating its use.

|             | Aut                             | omate                                                        | ed Fc                        | orced                      |                                              |                  |                                                                                    |
|-------------|---------------------------------|--------------------------------------------------------------|------------------------------|----------------------------|----------------------------------------------|------------------|------------------------------------------------------------------------------------|
|             | Degra                           | datio                                                        | <u>ו Cor</u>                 | <u>nditio</u>              | าร                                           |                  |                                                                                    |
| Stress Type | Major<br>Degradation<br>Pathway | Reagents                                                     | Co-solvent<br>(if necessary) | API Conc.                  | Temp.                                        | Sampling<br>Time | Comments                                                                           |
|             |                                 |                                                              | Primary Solution             | Phase Conditions           |                                              |                  |                                                                                    |
| AcidBase    | Hydrolysis                      | 0.01N HCV<br>0.01N NaOH                                      | Acetonitrile                 | Analysis<br>concentration* | 40°C<br>(increase if<br>needed)              | 3 hours          | Alcohol solve<br>can facilitat<br>acid/base<br>catalyzed<br>addition of<br>alcohol |
| AcidBase    | Hydrolysis                      | 0.1N HCI/<br>0.1N NaOH                                       | Acetonitrile                 | Analysis<br>concentration* | 40 <sup>4</sup> C<br>(increase if<br>needed) | 24 hours         | Alcohol solve<br>can facilitat<br>acid/base<br>catalyzed<br>addition of<br>alcohol |
| H2O2        | Nucleophilic<br>Oxidation       | 0.3 % H <sub>3</sub> O <sub>3</sub> /pH 7<br>buffer solution | MeOH or<br>EtOH              | Analysis<br>concentration* | RM                                           | 24 hours         | Acetonitrik<br>solvent react v<br>H2O2 to for<br>peroxycarbar<br>acid              |
| AIBN        | Auto-oxidation                  | 5 mM AIBN in<br>MeOH/<br>H <sub>2</sub> O (1:1)              | See<br>comments              | Analysis<br>concentration* | 40°C                                         | 24 hours         | Severe solve<br>effects curren<br>under<br>investigatio                            |
| Thermal     | Heat                            | NA                                                           | Acetonitrile                 | Analysis<br>concentration* | 100° C                                       | 4 hours          |                                                                                    |

## User Friendly "Walk Up System" sample Preparation only – Cycle Compose the finance of the office of

#### Online sample preparation and analysis -ChemStation/Altas



# Conclusions

**Conclusion and Future Work** 

- The LEAP system has been approved and validated for use in performing method validations and forced degradation studies
- Linearity, reproducibility, ease of use, and open access have been demonstrated
- The automated sample preparation, online analysis, and auto report streamline pre- PCC chemical stability screen

### How Does the Leap Work?



### Establishing Linearity Manual vs. LEAP



### DART for Quick ID of Degradants?

**Dart Analysis Compound E** 

#### Direct Analysis in Real Time (DART) technology to interface with existing LC/MS

### Gas-phase proton transfer reactions

 $\begin{aligned} \text{He}^* + \text{nH}_2\text{O} &\longrightarrow \text{He} + [(\text{H}_2\text{O})_{n-1}\text{H}]^+ + \text{OH}^-\\ [(\text{H}_2\text{O})_{n-1}\text{H}]^+ + \text{AB} &\longrightarrow \text{ABH}^+ + (n-1)(\text{H}_2\text{O}) \end{aligned}$ 

#### • Gas-Phase Chemical Ionization

 $\begin{array}{l} [(H_2O)_{n-1}H]^* + NH_3 \longrightarrow NH_4^* + (n-1)(H_2O) \\ \\ NH_4^* + AB \longrightarrow [AB + NH_4]^* \end{array}$ 

### Future Work

- Develop and validate forced degradation workflow for lead Op activities
- Demonstrate the use of the LEAP System as a method development tool for kinetic profiling, on-line MS ID, etc.
- Evaluate and develop low throughput solubility/stability/redispersability combined workflow
- Evaluate low throughput dissolution screen

### **Goals of the Automated System**

- User friendly format a "Walk-Up System"
- Reproducibly and accurately performs
  method validation and forced degradation
- Automated Report featuring linearity, LOQ, LOD, and degradation profile overlays
- Adaptability of system to changing conditions (solvents, degradation conditions, etc.)

### Automated Report Stress Degradation Overlays



# Acknowledgements

#### Merck

- Lou Crocker, Mike Riebe, Alexander Chin
  Zhihong Ge, Chris Welch, Vinni Antonucci, Bing Mao. Abrahim
- Ahmed
- Xioayi Gong, Adam Beard, Biba Mirlinda, Naijun Wu
  Allen Templeton, Andrey Peresypkin
- John Delello, JJ Yates, Neil Rissen, Donglan Cai, Doug West, Adam Duckworth

#### Leap Technologies

- Carlos Perez, Scott Donenfeld, Brian Peat
- IonSense
- Brian Musselman